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Abstract Three theories for determination of the equilibrium states of initially flat, linearly elastic, rotationally
symmetric, taut membranes are considered: Föppl-von Kármán theory, Reissner’s theory, and a new gener-
alization of Reissner’s theory that does not restrict the strains to be small. Attention is focused on annular
membranes, but circular membranes are also treated. Large deformations are allowed, and the equilibrium
equations are written in terms of transverse, radial, and circumferential displacements. Problems considered
include radial stretching, transverse displacement of the inner edge, an adhesive punch pull-off test on a circu-
lar blister, transverse pressure, ponding of annular and circular membranes, a vertical distributed load with a
vertically sliding outer membrane edge, pull-in (snap-down, jump-to-contact) instability of a MEMS device,
torsion of the inner or outer edge of a stretched membrane, and a combination of radial stretching, vertical
displacement, and torsion. Results for the three theories are compared. Closed-form solutions are available in
a few cases, but usually a shooting method is utilized to obtain numerical solutions for displacements, strains,
and stresses. Conditions for the onset of wrinkling are determined. In the second part of this two-part study,
small vibrations about equilibrium configurations are analyzed.

1 Introduction

Membrane structures and structural components are of much interest in a variety of applications [1–3]. They
often exhibit large deflections. Since they cannot resist compression, they are susceptible to wrinkling. Linearly
elastic annular membranes and some circular membranes are considered in this paper. They are initially flat
(horizontal). The loading is rotationally symmetric, and the membranes are taut (i.e., not wrinkled or slack).

Nonlinear static analyses are presented in terms of radial, meridional, and circumferential displacements.
Three theories are utilized. One is Föppl-von Kármán theory [1,2,4] (to be denoted the FvK theory), another
is Reissner’s theory [5] (to be called the R theory), and in addition a generalization of Reissner’s theory is
introduced (to be labeled the GR theory) in which the strains are not restricted to be negligible compared
to unity. Displacements, strains, stress resultants, and conditions for wrinkling are determined. Closed-form
solutions are available in a few cases. In the other cases, a shooting method is applied to obtain numerical
solutions, using the programs NDSolve and FindRoot in Mathematica [6].

In the following section, the equilibrium equations in terms of displacements are derived for the three
theories for torsionless loading conditions. In Sect. 3, the annular membrane is stretched radially, either by
pulling inward at its inner edge or by pulling outward at its outer edge. The resulting radial tension is not
constant. In Sect. 4.1, the inner edge is displaced downward, either with or without inward radial stretching.
A closed-form solution for an adhesive problem is derived in Sect. 4.2, where a rigid, flat, circular punch is
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adhered to a circular membrane and is pulled transversely until the membrane separates when the contact
radius reduces to a certain threshold value.

Transverse pressure is applied in Sect. 5. An annular membrane is considered first. Next, a circular mem-
brane is deformed by pressure until it contacts a rigid horizontal surface; this problem is related to the con-
strained blister test for adhesion. The classic problem of a circular membrane subjected to pressure is also
treated. In Sect. 6, full ponding of annular and circular membranes is investigated, in which the membrane
holds a liquid whose top surface is at the level of the membrane’s supporting edge or edges. In Sect. 7, a
distributed vertical load is applied and the outer edge of the annular membrane is allowed to slide vertically
(but is constrained against radial displacement and rotation). This problem is motivated by an application of
geosynthetic reinforcement in geotechnical engineering.

An example from the field of microelectromechanical systems (MEMS) is analyzed in Sect. 8. An elec-
trostatic force from a rigid plate pulls a circular or annular membrane downward until it becomes unstable
and jumps into contact with the plate. In Sects. 9 and 10, the inner edge of an outwardly stretched, annular
membrane is subjected to torsion, and the FvK theory is used in the analysis. A transverse displacement of the
inner edge is also applied in Sect. 10.

Concluding remarks are presented in Sect. 11. In Part II of this study [7], small vibrations (axisymmetric
and non-axisymmetric) about equilibrium configurations are investigated with the FvK theory for some of the
problems treated below.

2 Equilibrium formulation

It is assumed in Sects. 2–8 that the circumferential displacement V (R) is zero (i.e., there is no torsion), and
that the radial and transverse displacements are rotationally symmetric. It is assumed that the membrane is
taut. The onset of wrinkling is determined by the condition that the minimum principal stress resultant reduces
to zero [8]. The self-weight of the membrane is neglected in the equilibrium analyses.

2.1 Generalized Reissner (GR) theory

A cross section along a radius of the membrane is depicted in Fig. 1. The membrane is assumed to be isotropic,
homogeneous, and linearly elastic with modulus of elasticity E , Poisson’s ratio ν, and constant thickness h. It
is subjected to a distributed load with tangential and normal components Pt and Pn per unit of deformed area,
respectively. The radial coordinate is R, with A ≤ R ≤ B . The radial displacement is U (R), the downward
displacement is W (R), and the meridional rotation is φ(R). The circumferential coordinate is θ .

For an incremental change in arc length in Fig. 1, the horizontal projection is dR + dU and the vertical
projection is dW . Hence [9]

W ′ = (1 + U ′) tan φ. (1)

The arc length of an element in the deflected membrane is [α2
r dR2 + α2

θdθ2]1/2, where [5,10]

αr = [(1 + U ′)2 + (W ′)2]1/2 = 1 + εr , αθ = R + U = R(1 + εθ ). (2a,b)

R U(R)

W(R)

B

Pn

Pt

f (R)

A

Fig. 1 Cross section along membrane radius in dimensional terms
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Using Eqs. (1) and (2), the meridional and circumferential strains may be written as

εr = [(1 + U ′)/ cosφ] − 1, εθ = U/R. (3a,b)

The use of the rotation φ in Eqs. (3) instead of the square root in Eq. (2a) is convenient.
The radial and circumferential stress resultants are Nr (R) and Nθ (R), respectively. The tangential and

normal equilibrium equations are [5]

(αθNr )
′ − α′

θNθ = −αrαθ Pt , (Nr/Rr )+ (Nθ /Rθ ) = −Pn, (4a,b)

where

1/Rr = φ′/αr = φ′ cosφ/(1 + U ′), 1/Rθ = W ′/(αrαθ ) = (sin φ)/(R + U ). (5a,b)

Linear stress–strain relationships are assumed. Since the engineering strains are used in Eqs. (3), and the
stress resultants in Eqs. (4) are defined with respect to the deformed configuration, the following relationships
are assumed, with factors 1 + εθ and 1 + εr in the respective denominators [11,12]:

Nr = Eh(εr + νεθ )/[(1 − ν2)(1 + εθ )], Nθ = Eh(εθ + νεr )/[(1 − ν2)(1 + εr )]. (6a,b)

The analysis is conducted in terms of nondimensional quantities:

r = R/B, a = A/B, u = U/B, w = W/B, nr = Nr/(Eh),
(7)

nθ = Nθ /(Eh), pt = Pt B/(Eh), pn = Pn B/(Eh).

With the use of Eqs. (2), (3) and (5)–(7), Eq. (1) becomes

w′ = (1 + u′) tan φ (8)

and Eqs. (4) can be written in the form

(νr − u) cos3 φ − (1 + ν)r cos2 φ + r(1 + u′ + ru′′) cosφ + r2(1 + u′)φ′ sin φ

= −(1 − ν2)(1 + u′)(r + u)(r cosφ)pt (9)

and

r(rφ′ + ν sin φ)(1 + u′ − cosφ)+ (νrφ′ + sin φ)u cosφ = −(1 − ν2)(1 + u′)(r + u)r pn, (10)

where primes denote differentiation with respect to r . After appropriate boundary conditions are defined at the
inner edge r = a and the outer edge r = 1, Eqs. (8)–(10) can be solved numerically for w(r), u(r), and φ(r).

In terms of displacements, the stress resultants are

nr = [(1 + u′ − cosφ)r + νu cosφ]/[(1 − ν2)(r + u) cosφ],
nθ = [u cosφ + νr(1 + u′ − cosφ)]/[(1 − ν2)(1 + u′)r ]. (11a,b)

Even though this GR theory does not require that the strains are small, it assumes that the material behavior
is linearly elastic, and this constitutive law often is not applicable for large strains. Almost all the numerical
results presented here will involve strains smaller than 0.05.
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2.2 Reissner (R) theory

In the theory developed by Reissner [5], it is assumed that the strains are small, i.e., that εr and εθ are negligible
compared to unity. From Eqs. (2), (3), (5) and (6), the following equations are used:

αr ≈1, αθ = R(1 + εθ )≈ R, α′
θ =1 + U ′ =(1 + εr ) cosφ≈cosφ, 1/Rr ≈φ′, 1/Rθ ≈(sin φ)/R.

(12)

Also,

Nr = Eh(εr + νεθ )/(1 − ν2), Nθ = Eh(εθ + νεr )/(1 − ν2), (13a,b)

where the strains are given by Eqs. (3). With the application of Eqs. (12) and (13), the remaining equations in
Eqs. (1)–(7) lead to the following equations for the nondimensional displacements u(r) and φ(r):

(νr − u) cos3 φ − (1 + ν)r cos2 φ + r(1 + u′ + ru′′) cosφ + r2(1 + u′)φ′ sin φ

= −(1 − ν2)r2 pt cos2 φ (14)

and

r(rφ′ + ν sin φ)(1 + u′ − cosφ)+ (νrφ′ + sin φ)u cosφ = −(1 − ν2)r2 pn cosφ. (15)

Also, Eq. (8) is valid.
The stress resultants in terms of displacements are given by

nr = [(1 + u′ − cosφ)r + νu cosφ]/[(1 − ν2)r cosφ],
nθ = [u cosφ + νr(1 + u′ − cosφ)]/[(1 − ν2)r cosφ]. (16a,b)

As written, the left-hand sides of Eqs. (9) and (14) are the same, and the left-hand sides of Eqs. (10) and (15)
are the same. Therefore the displacements (and strains) for the R and GR theories are the same if the right-hand
sides of those equations are respectively the same. This will occur in Sects. 3 and 4 where pt = pn = 0. It also
will occur in Sect. 7 where a vertical distributed load is constant per unit of undeformed area of the horizontal
projection of the membrane, and in Sect. 8 for the MEMS example. However, the stress resultants in these
cases are not the same for the R and GR theories.

2.3 Föppl-von Kármán (FvK) theory

The FvK equations do not involve the rotation φ(R). Consider rotationally symmetric equilibrium in terms of
U (R) and W (R). As in the R theory, εr and εθ are assumed to be negligible compared to unity, with εθ given
in Eq. (3b) and εr given in the FvK theory by

εr = U ′ + 0.5(W ′)2. (17)

Expansion of Eq. (2a) can be written as

εr = U ′ + 0.5(W ′)2[1 − U ′ + (U ′)2 − (U ′)3 − 0.25(W ′)2 + 0.75U ′(W ′)2] + . . . (18)

and as

εr = U ′[1 − 0.5(W ′)2 + 0.5U ′(W ′)2 + 0.375(W ′)4 − 0.5(U ′)2(W ′)2]
+ 0.5(W ′)2[1 − 0.25(W ′)2] + . . . (19)

Therefore the quantities in brackets in Eqs. (18) and (19) are replaced by unity to give Eq. (17), and hence
it is assumed here that U/R,U ′, and (W ′)2 are small compared with unity. (Similar restrictions also apply in
the R theory, since the strains are neglected in comparison with unity, and hence the rotations φ are restricted.)

With the use of Eqs. (3b), (4), (7), (13), (17), and

αr ≈ 1, αθ ≈ R, α′
θ ≈ 1, 1/Rr ≈ W ′, 1/Rθ ≈ W ′/R, (20)
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one obtains the following nondimensional equations for equilibrium in the radial and vertical directions
[13–15]:

r2u′′ + ru′ − u + r2w′w′′ + 0.5(1 − ν)r(w′)2 = −(1 − ν2)r2 pt (21)

and

[ru′′ + (1 + ν)u′ + 0.5(w′)2]w′ + [ru′ + νu + 1.5r(w′)2]w′′ = −(1 − ν2)r pn . (22)

In the application of the FvK theory, pt is taken to be zero for both a normal pressure and a distributed vertical
load, and pn is taken to be the pressure and the vertical load, respectively (i.e, the right sides of Eqs. (21) and
(22) are the same for normal or vertical loading).

The stress resultants are

nr = [u′ + 0.5(w′)2 + (νu/r)]/(1 − ν2), nθ = [(u/r)+ νu′ + 0.5ν(w′)2]/(1 − ν2). (23)

3 Radial stretching

In some investigations, the inner or outer edge of a flat annular membrane is pulled radially (or both edges
are pulled), causing tension and sometimes inducing wrinkles in the neighborhood of the inner edge (e.g.,
[16–22]). Applications of this problem occur in forming of metal sheets [23], cell and tissue biomechanics
[24,25], and healing of skin wounds [26].

Two cases are considered here. One will be called “pulling inward:” the outer edge is fixed and the inner
edge is pulled inward by a radial displacement U1. The other case will be called “pulling outward:” the inner
edge is fixed and the outer edge is pulled outward by a radial displacement U2. The nondimensional boundary
conditions are u(a) = −u1 and u(1) = 0 for pulling inward, and u(a) = 0 and u(1) = u2 for pulling outward,
where u j = U j/B for j = 1, 2, and u j > 0.

For the FvK, R, and GR theories, with w = φ = pt = pn = 0, the equilibrium equations reduce to the
linear equation

r2u′′ + ru′ − u = 0. (24)

For pulling outward, the solution of Eq. (24) is [17]

u(r) = u2(r
2 − a2)/[r(1 − a2)]. (25)

The circumferential stress resultant nθ is always positive, and wrinkling does not occur. For the R and FvK
theories, the stress resultants can be written as

nr (r) = u2[(1 + ν)r2 + (1 − ν)a2]/[(1 − ν2)(1 − a2)r2],
nθ (r) = u2[(1 + ν)r2 − (1 − ν)a2]/[(1 − ν2)(1 − a2)r2]. (26)

For pulling inward, the solution of Eq. (24) is [17]

u(r) = −u1a(1 − r2)/[r(1 − a2)]. (27)

Material is pulled into regions with smaller circumferential lengths, and nθ may become negative, which leads
to wrinkling [8]. The stress resultants for the R and FvK theories take the form

nr (r) = u1a[(1 + ν)r2 + (1 − ν)]/[(1 − ν2)(1 − a2)r2],
nθ (r) = u1a[(1 + ν)r2 − (1 − ν)]/[(1 − ν2)(1 − a2)r2]. (28)

Hence, for wrinkling not to occur, r > r∗ is needed where (for the GR, R, and FvK theories)

r∗ = [(1 − ν)/(1 + ν)]1/2 (29)

[17–20]. This condition is independent of the magnitude of u1.
Values of r∗ for ν = 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, are 0.905, 0.816, 0.734, 0.655 and 0.577. The

displacement in Eq. (27) is only valid if a > r∗, which restricts the annular membrane to be narrow, especially
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when ν is small, if wrinkling is to be avoided. The radial stress resultant nr for pulling inward is positive when
a > r∗, and decreases as r increases from r = a (with a ≥ r∗) to r = 1.

Radial displacements u(r) normalized by the specified edge displacement are plotted in Fig. 2. The two
curves in the bottom half of the figure are from Eq. (27) for pulling inward where u(r) < 0 between the edges,
with j = 1, a = 0.6 and 0.8, u(a)/u1 = −1, and u(1)/u1 = 0. The curves are independent of ν, but are only
valid if a > r∗. Using a = r∗ = 0.6 in Eq. (29), one finds that the left curve is only valid if ν > 0.47, and
similarly, the right curve is only valid if ν > 0.22. The curves in the top half of Fig. 2 for pulling outward
( j = 2) are obtained from Eq. (25) with a = 0.2, 0.4, 0.6, and 0.8, u(a)/u2 = 0, and u(1)/u2 = 1.

4 Vertical displacement at inner edge

As mentioned in Sect. 2.2, the displacements and strains obtained with the R and GR theories are the same for
problems considered in this section. In the nondimensional equilibrium equations, pt = pn = 0.

4.1 Annular membrane

In this subsection, the outer edge is fixed and the inner edge is displaced downward by a distance W1 > 0.
This problem is related to punching (indentation) of a membrane by a cylindrical body (e.g., [27]) and to
a pull-off test for adhesion described in Sect. 4.2. Studies considering such a transverse edge displacement
include [28–35].

No radial stretching.The boundary conditions are w(a) = w1 and u(a) = u(1) = w(1) = 0. The stress
resultants nr and nθ are positive, and they decrease as r increases from r = a to r = 1. For ν = 1/3, the FvK
theory has a closed-form solution in which there is no radial displacement (e.g., [31,36]):

w(r) = w1(1 − r2/3)/(1 − a2/3), u(r) = 0, nr (r) = 3nθ (r) = w2
1/[4(1 − a2/3)2r2/3]. (30)

For all other values of ν, u(r) is very small compared to w(r). The sign of u(r) for a < r < 1 is positive if
ν < 1/3 and negative if ν > 1/3. The function w(r) in Eq. (30) is almost linear. The stress resultant nr (r),
normalized by w2

1, is plotted in Fig. 3 for a = 0.2, 0.4, 0.6, and 0.8. As seen in Eq. (30), nθ (r) has the same
shape as nr (r) but with a magnitude one-third as large.

Some cases were examined numerically with the GR theory. In the shooting method, the values of u′(a)
and φ(a) are varied until the boundary conditions at r = 1 are satisfied with sufficient accuracy. In most cases
for parameters w1, a, and ν for which the maximum strain εr (a) is less than 0.05, the maximum magnitudes
of u(r) computed using the GR theory are slightly smaller than those from the FvK theory. The case ν = 1/3
is an exception, in which u(r) from the GR theory is very small, whereas u(r) from the FvK theory is zero.

Inward radial stretching. Now the annular membrane is assumed to be displaced downward at the inner
edge with w(a) = w1, and then stretched radially inward at the inner edge, so that u(a) = −u1. For the R and
GR theories, u′(a) and φ(a) are varied until u(1) = w(1) = 0; for the FvK theory, u′(a) andw′(a) are varied.
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Fig. 2 Normalized radial displacement u(r)/u j for pulling inward ( j = 1) and pulling outward ( j = 2)
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Fig. 3 Vertical displacement w1 at inner edge: normalized meridional stress resultant nr (r)/w2
1 versus r; ν = 1/3; FvK theory

The effect of w1 on the wrinkling theshold radius r* is investigated. The condition nθ (a) = 0 is used as a
boundary condition. For the FvK theory, u′(a) = [u1/(νa)]− 0.5[w′(a)]2 is used, and a andw′(a) are varied.
The resulting solution for a gives r*. For the R and GR theories, u′(a) = [(u1 cosφ(a)/(νa)] − 1 + cosφ(a).

When w1 = 0, the value of r∗ is given in Eq. (29) and is independent of u1. For w1 �= 0, r∗ depends on
u1 and w1 as well as ν. Some results showing the dependence of r∗ are presented in Figs. 4 and 5 using the
FvK theory. In Fig. 4, u1 = 0.003 and r∗ is plotted as a function of w1 for ν = 0.1, 0.3, and 0.5. It is seen
that r∗ decreases as w1 or ν increases. In the figure, the maximum strain is 0.05 at the right end of the upper
curve, and lower elsewhere. In Fig. 5, w1 = 0.01. The maximum strain is greater than 0.05 for ν = 0.1 and
u1 > 0.0045, and less otherwise. The threshold radius r∗ increases as u1 increases.

Computations with the R and GR theories were made to compare values of r∗ to those in Figs. 4 and 5. It
was found that the values are slightly higher for the R and GR theories, but the differences are insignificant.
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Fig. 4 Vertical displacement w1 at inner edge: minimum inner-edge radius r∗ for no wrinkling versus w1; u1 = 0.003; ν =
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4.2 Adhesive punch pull-off test on circular blister

This type of analysis is relevant to an adhesive pull-off test in which a rigid, vertical, circular cylindrical punch
is in adhesive contact axisymmetrically with a horizontal, circular (not annular) membrane whose edge is
fixed. The cylinder is pulled upward and the membrane slowly debonds from the cylinder, with decreasing
contact radius, until the membrane suddenly separates from the punch at a finite contact radius. Fig. 6 depicts
the cross section along a diameter, in nondimensional terms.

This problem has been analyzed in [37–42]. The analysis in the last five of these papers considered a
cylindrical radius just smaller than the membrane radius, and applied approximate solutions, mostly assuming
(i) that nr and nθ are equal and independent of r , or sometimes assuming (ii) that w(r) is linear.

As an example, the closed-form solution in Eqs. (30) is considered, with the FvK theory and ν = 1/3. In
nondimensional terms, the circular membrane is fixed at r = 1, and a flat punch is adhered to the membrane
for 0 ≤ r ≤ a. The punch is displaced upward with deflectionw1(< 0) and total force f (Fig. 6). The adhesion
energy (or critical strain energy release rate) is denoted (∆γ )N . The quantities f and (∆γ )N are related to the
dimensional upward force F and adhesion energy (∆γ )D by

f = F/(Eh B), (∆γ )N = (∆γ )D/(Eh). (31)

Vertical equilibrium of the bottom of the punch gives, with the use of Eqs. (30),

f = 2πanr (a)w
′(a) = −(π/3)w3

1(1 − a2/3)−3. (32)

Following [39], the nondimensional net input energy is

UT = f |w1| − πa2(∆γ )N − (π/12)w4
1(1 − a2/3)−3, (33)

where the first term represents the work done by the punch, the second term represents the surface energy of
adhesion, and the last term is the negative of the membrane strain energy [43] computed with w and u given
in Eqs. (30). For debonding to occur, the derivative of UT with respect to the bonded area πa2 is set equal to
zero. After substituting Eq. (32) into Eq. (33), this calculation furnishes a formula for w1 in terms of a and
(∆γ )N , which can be used to give f in terms of a and (∆γ )N , and then a can be eliminated between those
two formulas to give w1 in terms of f and (∆γ )N . The three formulas are

w1 = −21/2(∆γ )
1/4
N (a1/3 − a), f = (2/3)21/2πa(∆γ )3/4N ,

w1 = [3/(2π)](∆γ )−1/2
N f − (3 f/π)1/3. (34)

Based on the last of these equations, as the cylinder is pulled upward and w1 decreases, w1 reaches a limit
when dw1/d f = 0, which leads to

a = 27−1/2 = 0.1925, w1 = −0.5443(∆γ )1/4N , f = 0.5700(∆γ )3/4N . (35)

In other words, for ν = 1/3 and FvK theory, the membrane suddenly separates from the cylinder when the
contact radius decreases to 0.1925 times the radius of the outer edge, independently of the adhesion energy
(∆γ )N . Very similar values a = 0.1945 and 0.1932 were found in [38] using assumptions (i) and (ii), respec-
tively, for any values of (∆γ )N and ν, even though the approximate functions used there for w(r), nr (r), and
nθ (r) are quite different from those in Eqs. (30) that satisfy the FvK equations for ν = 1/3.
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a w(r)

r

w1

1

Fig. 6 Cross section along diameter of circular membrane in adhesive punch pull-off test
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5 Transverse pressure

In this section, a dimensional uniform transverse pressure P0 acts on the membrane. In nondimensional terms,
pt = 0 and pn = p0 = P0 B/(Eh). In the FvK theory,w(r) is proportional to p1/3

0 , and u(r), strains, and stress

resultants are proportional to p2/3
0 . Wrinkling does not occur. Annular and circular membranes are considered.

5.1 Annular membrane

The geometry along a diameter is shown in Fig. 7 in nondimensional terms. The island blister test for adhesion
[14,44–46] is an application of this problem, with debonding occurring at the inner radius r = a. Here the
annular membrane is fixed at r = a and r = 1, with u = w = 0 at those radii. In the shooting method, the
values of u′(a) and either φ(a) or w′(a) are varied until the boundary conditions at r = 1 are satisfied with
sufficient accuracy. Wrinkling does not occur.

The maximum transverse deflection wmax is larger when computed using the GR and R theories than from
the FvK theory. For example, if ν = 0.3, a = 0.3 and p0 = 0.04, which yields a maximum strain εr (a)
approximately equal to 0.05, the values of wmax for the GR, R, and FvK theories, respectively, are 0.0770,
0.0763 and 0.0755. For the GR and R theories, the proportionality relationships described above are approxi-
mately satisfied. In Fig. 8, wmax is plotted as a function of a using the GR theory for the case p0 = 0.01, with
the lower and upper curves representing the cases ν = 0.5 and ν = 0, respectively. The maximum strain is
less than 0.05 except near the left end of the curve for ν = 0.

5.2 Circular membrane with rigid horizontal constraint (constrained blister test)

A circular (not annular) membrane is considered in this subsection, as shown in Fig. 9 in nondimensional terms
along a diameter. The origin is at the center of the membrane. The membrane is subjected to pressure from
above. The transverse deflection is restricted by a rigid, horizontal, frictionless surface at a vertical distance

r
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1

Fig. 7 Cross section along diameter of annular membrane under transverse pressure
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Fig. 8 Transverse pressure: maximum transverse displacement wmax versus inner radius a; p0 = 0.01; ν = 0, 0.5; GR theory
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Fig. 9 Cross section along diameter of circular membrane with rigid constraint

w0 below the edge (r = 1), and the contact radius r = a is unknown a priori. This configuration is found in
the constrained blister test for adhesion, with debonding occurring at r = 1 (e.g., [37,47,48]). For a fixed edge
at r = 1, the effect of adhesion on the contact area πa2 was analyzed in [43].

For 0 ≤ r ≤ a, w = 0 and u = Cr where C is a constant, so that u = ru′. The boundary conditions at
r = a are u = au′, w = 0, and either w′ = 0 (FvK theory) or φ = 0 (R and GR theories), and at r = 1
they are u = 0 and w = −w0. In the shooting method, it is easier to specify a rather than w0, and to obtain
w0 as the value of −w(1) in the solution. The unknown quantity u′(a) is varied until the boundary condition
u(1) = 0 is satisfied.

Some shapes w(r) using the FvK theory are presented in [43] along with the effect of the pressure on the
contact radius. Computations using Eqs. (9) and (10) show that for given values of ν,w0 and p0, and for a suf-
ficiently small range of the contact radius a, the value of a obtained with the GR theory is larger than that from
the FvK theory. However, if a is sufficiently large, the opposite is true. For example, assume that ν = 0.3 and
w0 = 0.11. For p0 = 0.005, the FvK, R, and GR theories yield, respectively, a = 0.0582, 0.0607 and 0.0718.
For p0 = 0.02, they give a = 0.474, 0.473 and 0.479. Finally, for p0 = 0.2, they provide a = 0.763, 0.755
and 0.760.

5.3 Circular membrane

By letting a → 0 in the numerical analysis of the previous subsection, one can obtain results for a circular
membrane fixed at its edge (r = 1) and subjected to a normal pressure (with no rigid constraint). The classical
analysis in [49] is often cited with regard to this problem.

Numerical results based on the FvK theory (using a = 10−9) are presented in Table 1 for ν = 0, 0.1, 0.2,
0.3, 0.4, and 0.5. Values of the depth w0, radial strain at the center (r = 0), radial strain at the edge (r = 1),
radial stress resultant at r = 0 (which is the same as the circumferential stress resultant there), radial stress
resultant at r = 1, and circumferential stress resultant at r = 1 are listed. For ν = 0.3, the value of w0 was
given in [43], and similar values have been computed by others in earlier studies. The values of w0 and nr (0)
are similar to those in [50] except for w0 for ν = 0.1. The maximum strain occurs at r = 0 if ν = 0, 0.1 and
0.2, and at r = 1 if ν = 0.3, 0.4 and 0.5. The radial displacement u(r) has its maximum value near r = 0.61.

Peddieson [51] applied the R theory in terms of a stress function instead of u(r), for the same values of ν
and for five values of p0 (up to p0 = 0.16). Using the present equations and shooting procedure, the results for
w0 are within a few percent of his, sometimes lower and sometimes higher. They are slightly higher than the

Table 1 Effect of Poisson’s ratio ν or circular membrane with transverse pressure; FvK theory

ν 0 0.1 0.2 0.3 0.4 0.5

w0/(p
1/3
0 ) 0.71832 0.69890 0.67744 0.65344 0.62626 0.59488

εr (0)/(p2/3
0 ) 0.4051 0.3710 0.3365 0.3018 0.2665 0.2307

εr (1)/(p2/3
0 ) 0.2894 0.2988 0.3035 0.3030 0.2967 0.2838

nr (0)/(p2/3
0 ) 0.4051 0.4122 0.4207 0.4311 0.4442 0.4613

nr (1)/(p2/3
0 ) 0.2894 0.3018 0.3161 0.3330 0.3532 0.3784

nθ (1)/(p2/3
0 ) 0 0.0302 0.0632 0.0999 0.1413 0.1892
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values ofw0 from the FvK theory, and the GR theory produces even higher values. For ν = 0.3, the maximum
strain is 0.05 when p0 = 0.065 and the corresponding central transverse displacement is about one-eighth of
the diameter of the membrane. For this case, w0 = 0.2627, 0.2649 and 0.2739, respectively, from the FvK,
R and GR theories. At p0 = 0.01, the corresponding values are w0 = 0.1408, 0.1411 and 0.1424. (For the R
and GR theories, φ(a) = 10−7 and a = 10−9 are used to avoid numerical problems.)

Pai [52] listed the results for the example of P0 = 5.51581 GPa, B = 1.5 m, h = 0.0127 mm and ν = 0.3.
He obtained a central deflection W0 = 18.6573 mm. From the present analysis, the results from the FvK, R,
and GR theories, respectively, are W0 = 18.6556 mm, 18.6560 mm and 18.6572 mm.

6 Ponding

In this section, the deformed membrane holds a liquid with dimensional specific weight γD and nondimen-
sional specific weight γN = γD B2/(Eh). The liquid level is at the level of the outer edge of the membrane,
i.e., full ponding is assumed. In the FvK theory, w(r) is proportional to γ 1/2

N , and u(r), strains, and stress
resultants are proportional to γN . Wrinkling does not occur. Annular and circular membranes are considered.

6.1 Annular membrane

For the annular membrane, u = w = 0 at r = a and r = 1 (similar to Fig. 7). In the equilibrium equations,
pt = 0 and pn = γNw. Numerical results using the FvK theory with ν = 0.3 are presented in Table 2. The
largest transverse displacement wmax occurs near r = (a + 1)/2, i.e., near midway between the inner and
outer edges, where the value ofw will be denotedwmid. For a = 0.2, 0.4, 0.6 and 0.8,wmid and the maximum
values of εr and nr (which occur at the inner edge r = a) are listed. The values of wmid are extremely close
to the maximum values of w(r).

The effect of ν on wmid is shown in Table 3. For a = 0.2, 0.4, 0.6 and 0.8, values of wmid/(γ
1/2
N ) from the

FvK theory are listed for ν = 0, 0.1, . . . , 0.5. As expected, the transverse displacement decreases as either ν
or a increases.

The R and GR theories yield larger values of wmax then the FvK theory. When the maximum strain is
0.05 for the FvK results with ν = 0.3, for a = 0.2, 0.4, 0.6 and 0.8, respectively, the maximum transverse
displacements wmax given by the R theory are larger by 1.2, 1.6, 1.8 and 2.1%, and for the GR theory they are
larger by 2.6, 3.5, 4.1 and 4.7%.

6.2 Circular membrane

Results for full ponding of a circular membrane, fixed at its edge, were presented in [53,54]. The numerical
procedure used in this subsection is similar to that described in Sect. 5.3. Here the origin is on the membrane
at r = 0 (actually at r = a = 10−9 in the computations), and the depth at r = 0 is denoted w0 (similar to

Table 2 Effect of inner radius a on annular membrane with ponding; FvK theory, ν = 0.3

a 0.2 0.4 0.6 0.8

wmid/[(∆γ )1/2N ] 0.129 0.0707 0.0311 0.00774
εr (a)/(∆γ )N 0.126 0.0494 0.0181 0.00401
nr (a)/(∆γ )N 0.139 0.0542 0.0199 0.00441

Table 3 Effect of Poisson’s ratio ν on wmid/(γ
1/2
N ) for annular membrane with ponding; FvK theory

ν 0 0.1 0.2 0.3 0.4 0.5

a = 0.2 0.140 0.137 0.134 0.129 0.123 0.116
a = 0.4 0.0751 0.0743 0.0729 0.0707 0.0678 0.0640
a = 0.6 0.0327 0.0325 0.0320 0.0311 0.0298 0.0282
a = 0.8 0.00812 0.00808 0.00795 0.00774 0.00744 0.00703
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Fig. 9 with a = 0). In the equilibrium equations, pt = 0 and pn = γN (w0 +w). The boundary conditions are
u = w = 0 and either w′ = 0 or φ = 0 at r = 0, and u = 0, w = −w0 at r = 1. In the shooting procedure,
the unknowns are u′(0) and w0. For the R and GR theories, φ(a) = 10−7 was used in the computer program
to avoid numerical problems.

First, the example treated in [53,54] is analyzed, in which the dimensional radius is B = 1.857 m, γD =
9.8 kN/m3 (water), E = 208 GPa (304 stainless steel), h = 0.051 mm, and ν = 1/3. The FvK theory here
gives W (0) = 5.07 cm, Umax = 0.287 mm, and stresses σr (0) = σθ (0) = 144.13 MPa, σr (B) = 100.78 MPa,
and σθ (B) = 33.59 MPa. These values are slightly higher than those in the two references.

Consider the case ν = 1/3 and γN = 0.35, which has a maximum strain of εr (0) = 0.05 in the FvK
theory. Results for w0 (the magnitude of the central deflection), εr (0), nr (0), nr (1), nθ (1), and umax from the
FvK, R, and GR theories are listed in Table 4. The stress resultants at r = 1 are slightly lower for the R theory
than for the FvK theory. All the values for the GR theory are higher than those for the FvK and R theories.

In order to compare the results of the three theories up to large strains, the nondimensional depth w0 is
plotted as a function of the nondimensional specific weight γN in Fig. 10 for ν = 1/3. The lower (solid)
curve corresponds to the FvK results, the intermediate (dashed) curve to the R theory, and the top (dotted)
curve to the GR theory. The FvK curve is given by w0 = 0.4742(γN )

1/2. The maximum strain is 0.05 when
γN = 0.35, 0.34, and 0.31, respectively, in the FvK, R, and GR results. At the right end of the figure (γN = 1),
the maximum strain is 0.14, 0.16, and 0.24, respectively, in the FvK, R, and GR results.

7 Vertical distributed loading, with vertically sliding outer edge

The motivation for the problem analyzed in this section comes from geotechnical engineering [55,56]. Circular
piles are sometimes used to strengthen soft soils underneath embankments. One or more layers of a geosyn-
thetic material may be placed horizontally over the piles to distribute the downward loading toward the piles
and away from the soft soil. The deflections, strains, and tensions in these membranes need to be predicted.
An axisymmetric model involving one pile is often used for analytical purposes. Since this is a “unit cell” for
one pile in a periodic array, the radial displacement and the slope of the membrane at the outer boundary are
assumed to be zero. Also, the membrane directly over the pile is almost flat and then drops sharply into the
soil lying outside the pile, so that the membrane is sometimes assumed to be pinned at the edge of the pile, and
thus to have an annular shape. The geometry along a diameter is depicted in nondimensional terms in Fig. 11.

Table 4 Results from three theories for circular membrane with ponding; ν = 1/3, γN = 0.35

FvK theory R theory GR theory

w0 0.2805 0.2849 0.3000
εr (0) 0.0498 0.0517 0.0572
nr (0) 0.0747 0.0775 0.0811
nr (1) 0.0522 0.0520 0.0570
nθ (1) 0.0174 0.0173 0.0181
umax 0.0165 0.0172 0.0188
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Fig. 10 Ponding on circular membrane: central transverse displacement versus specific weight of liquid; ν = 1/3; FvK, R, and
GR theories
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Fig. 11 Cross section along diameter of annular membrane with sliding outer edge; vertical loading

The vertical loading is assumed to have the constant dimensional value P per unit of undeformed area of
the horizontal projection of the membrane. For the GR theory,

Pt = P sin φ/[(1 + εr )(1 + εθ )], Pn = P cosφ/[(1 + εr )(1 + εθ )]. (36)

For the R theory, the denominators in Eqs. (36) become unity. The right sides of Eqs. (9) and (14) become
−(1 − ν2)r2(sin φ cos2 φ)p, and the right sides of Eqs. (10) and (15) become −(1 − ν2)r2(cos2 φ)p, where
p = P B/(Eh). Therefore the displacements based on the R and GR theories are the same, as mentioned in
Sect. 2.2. For the FvK theory, Pt = 0 and Pn = P , and in Eqs. (21) and (22), respectively, pt = 0 and pn = p.

The boundary conditions are u(a) = w(a) = 0, u(1) = 0, and either w′(1) = 0 (FvK theory) or φ(1) = 0
(R and GR theories). To obtain numerical solutions of the equilibrium equations, the quantities u′(a) and
either w′(a) or φ(a) are varied until the boundary conditions at r = 1 are satisfied. In the FvK theory, w(r)
is proportional to p1/3, and u(r), strains, and stress resultants are proportional to p2/3. Attention is focused
on the vertical displacement w(1) at the outer edge, which is denoted w2, and on conditions for the onset of
wrinkling.

Table 5 presents values of w2/p1/3 for a = 0.2, 0.4, 0.6 and 0.8, with ν = 0.1, 0.2, . . . , 0.5. Where
numbers are not listed, the minimum circumferential stress resultant nθ is negative and wrinkling occurs. This
case is different from previous ones in that wrinkling does not initiate at the inner edge r = a. The radial
displacement u(r) is zero at the inner and outer edges, and is negative internally. Hence points on the membrane
move inward. The radius associated with the largest inward movement (i.e., minimum value of u) is near the
radius with the minimum value of nθ (where wrinkling begins).

Consider decreasing values of ν. For a = 0.2, nθ decreases to zero at r = 0.62 when ν = 0.244. For
a = 0.4, nθ decreases to zero at r = 0.68 when ν = 0.211. For a = 0.6, nθ decreases to zero at r = 0.78
when ν = 0.150. For a = 0.8, nθ decreases to zero at r = 0.89 when ν = 0.0769.

Now assume that ν is fixed and a is reduced. For ν = 0.1, nθ decreases to zero at r = 0.85 when a = 0.739.
For ν = 0.2, nθ decreases to zero at r = 0.62 when a = 0.245. For ν = 0.3, 0.4, and 0.5, nθ is positive for
all values of a.

The displacements w(1) based on the GR theory (and hence the same for the R theory) were computed
for the cases in Table 5 with p chosen for each case such that the maximum strain εr (a) is 0.05. The resulting
displacements at the outer edge are between 1.3 and 1.8% higher than those in Table 5 from the FvK theory.

8 MEMS device

The MEMS device considered here exhibits an instability that can be utilized (as in a switch) or needs to be
prevented. In dimensional terms, a horizontal rigid plate is situated below an initially flat membrane, with

Table 5 Effect of Poisson’s ratio ν on w2/p1/3 for annular membrane with vertical load; FvK theory

ν 0.1 0.2 0.3 0.4 0.5

a = 0.2 – – 0.771 0.755 0.734
a = 0.4 – 0.498 0.492 0.481 0.466
a = 0.6 – 0.278 0.274 0.268 0.259
a = 0.8 0.108 0.107 0.106 0.103 0.0993
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an initial gap g0. A voltage difference V0 is applied, and the membrane deflects toward the plate due to the
electrostatic Coulomb force. When the voltage reaches a critical value, the equilibrium state of the membrane
becomes unstable and the membrane jumps downward and contacts the plate. This is called a pull-in instability.

Circular membranes exhibiting this instability were considered in [57–62] and elsewhere, with [60,61]
including an analysis of annular membranes. An application of the annular geometry may occur in a micro-
pump [63], and an annular plate (i.e., including bending stiffness) was analyzed in [64].

In [57]–[62], stretching of the membrane was neglected and a constant applied radial tension T was assumed
to act on the membrane, initially and during deformation. The governing equation for the “standard model” is

T [W ′′ + (W ′/r)] = PV0 where PV0 = ε0V 2
0 /[(g0 − W )2]. (37)

The quantity ε0 is the permittivity of free space. In this model, the electrostatic pressure is inversely propor-
tional to the square of the gap. Based on the form of Eq. (37), the pull-in voltage V ∗

0 is proportional to the 3/2
power of g0.

Duan and Wan [65] analyzed a plate model. They also included stretching of the thin structure in a restricted
way, using an average radial strain and assumption (i) described in Sect. 4.2, in which the radial and circumfer-
ential stress resultants are assumed to be equal and to be independent of the radius. There was no pre-tension,
and the radial stress was proportional to an integral of R(W ′)2 where R is the radial coordinate. Also, the
authors replaced the electrostatic pressure in Eq. (37) by a constant (average) value in their approximate solu-
tion procedure. Based on their equations, the pull-in voltage V0* is proportional to the 3/2 power of g0 when
bending dominates, and to the 5/2 power of g0 when stretching dominates.

In this section, the formulations in Sect. 2 are utilized, which neglect bending stiffness. The radial dis-
placement u is an unknown function of r , along with the stress resultants and transverse displacement. No
pre-tension is required, although it can be included as in Sect. 3. The membrane is fixed (i.e., no transverse or
radial displacements) at its outer edge r = 1, and also at its inner edge r = a for the annular case. Unlike the
analyses in [57]–[62] that are based on the structural model in Eq. (37), here the results depend on Poisson’s
ratio. For the FvK theory, the pull-in voltage V ∗

0 is proportional to the 5/2 power of g0.
The standard electrostatic pressure PV0 in Eq. (37) is used. It is assumed that this pressure is a downward

force per unit of horizontal area. The nondimensional equilibrium equations are similar to those in Sect. 7
with p replaced by pV0/[(δ0 − w)2] where pV0 = ε0V 2

0 /(2Eh B) and δ0 = g0/B (the aspect ratio [59]). The
nondimensional pull-in pressure magnitude will be denoted p∗

V0
.

8.1 Annular membrane

The numerical method for the annular membrane is similar to that described in Sect. 7. The curve of the forcing
magnitude pV0 versus a measure of the deflection (e.g., the maximum deflection) exhibits a turning (limit)
point when pull-in instability occurs. Results were obtained for the case of an inner radius a = 0.5, Poisson’s
ratio ν = 0.1, and nondimensional initial gap δ0 = 0.05.

Using the FvK theory, p∗
V0

= 4.91 × 10−6, with a corresponding maximum downward deflection wmax =
0.0328 occurring at r = 0.75. The maximum slope magnitude is 0.20 (at r = 1), and the maximum radial
strain is εr (a) = 0.014. If δ0 were replaced by cδ0 while a and ν remained fixed, then p∗

V0
, w, and u would

become c5 p∗
V0
, cw, and c2u, respectively, so that p∗

V0
is proportional to δ5

0, and the dimensional pull-in voltage

V0* is proportional to g5/2
0 . Strains and stress resultants would be multiplied by c2.

Using the R or GR theory, p∗
V0

= 4.83 × 10−6 and the corresponding maximum downward deflection
wmax = 0.0322 occurs at r = 0.76.

Wrinkling can occur before pull-in instability if ν is sufficiently small. For example, using the FvK, R, or
GR theories, again with a = 0.5 and δ0 = 0.05, if pV0 is very small (e.g., 1 × 10−10) and if ν is decreased
to 0.061, then nθ decreases to zero at r = 0.59. The membrane would exhibit radial wrinkles in an annular
region around r = 0.59 if ν < 0.061.

8.2 Circular membrane

The numerical procedure is similar to the one used in Sect. 6.2 (with a = 10−6 here). For this circular case,
w is replaced by w0 + w in the pressure, where w0 = w(0) is the central transverse displacement of the
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membrane. For ν = 0.1 and δ0 = 0.05, all three theories give p∗
V0

= 5.1 × 10−8 with a corresponding central
deflection w∗

0 = 0.036 (i.e., 0.72δ0) at the onset of pull-in instability. The remaining results in this subsection
are based on the FvK theory. Wrinkling does not occur for the cases considered.

Radial stretching is included here by changing the boundary condition u(1) = 0 to u(1) = u2 (as used in
Sect. 3). Table 6 presents results at the pull-off condition for the case ν = 0. Results for radial stretching up to
u2 = 5δ2

0 are listed. Based on these values, for a given initial gap, the pull-in pressure magnitude p∗
V0

is almost
a linear function of u2 except near u2 = 0 (as are the strains and stress resultants). The central displacement at
pull-in, w∗

0 , decreases and then essentially becomes constant with w∗
0 = 0.46δ0 when u2 becomes sufficiently

large. The radial stress resultant nr is not independent of the radius, but is larger at the center (r = 0) than at
the edge (r = 1) of the membrane. However, the ratio between the central and edge values of nr approaches
unity as the magnitude of outward stretching increases.

The results can be related to the parameter λ = ε0V 2
0 /(2T g3

0) used in [57–61], where the membrane
tension T is assumed to be constant and stretching is neglected. Using that theory, the pull-in value λ* was
reported to be 0.789 [59,61] and the value of w∗

0/δ0 to be 0.4365 [59]. Here the parameter corresponding to
λ* is ξ∗ = p∗

V0
/(n∗

r δ
3
0), but the stress resultant nr is not constant in the membrane. If the value n∗

r (1) at the
edge is used, the value of ξ∗ is 0.79 or 0.80 for the cases in Table 6 except at u2 = 0, where it is 0.76.

The pull-in pressure and deflection in [57–62] and [65] do not depend on Poisson’s ratio ν. For the FvK
theory, the ratio w∗

0/δ0, listed in Table 6 for ν = 0, is almost the same for any value of ν (0 < ν ≤ 0.5). This
is also true for ξ*. However, pV0 * essentially doubles as ν increases from 0 to 0.5, and pV0 * is approximately

proportional to 1/(1 − ν). Therefore, for any value of u2/(δ
2
0) in Table 6, one can divide the value of p∗

V0
/(δ5

0)

in the table by 1 − ν to obtain an approximate value of p∗
V0
/(δ5

0) for any value of ν (0 < ν ≤ 0.5).
The FvK, R, and GR equations given in Sect. 2 could be used with more general formulations of the

electrostatic force, such as the “corner-corrected” theory in [59], inclusion of the Casimir force [61], or a
permittivity that varies with the radius [62].

9 Torsion at inner edge

A number of studies have considered torsion of the inner edge of a planar annular membrane (e.g., by a rigid
hub) under initial tension. They include [66–87].

The problem involves the dimensional circumferential displacement V(R), which is not included in the R
and GR theories described in Sect. 2. Therefore only the FvK theory will be utilized. The strain εθ is given in
Eq. (3b) and εr is given in Eq. (17). The dimensional shear stress resultant Nrθ (R) and shear strain εrθ (R) satisfy
the following equilibrium equation (with Pt = Pn = 0), stress–strain relationship, and strain–displacement
relationship [88]:

r N ′
rθ + 2Nrθ = 0, Nrθ = Ehεrθ /[2(1 + ν)], εrθ = V ′ − (V/R). (38)

In terms of the nondimensional displacement ve = V/B, these equations lead to the equilibrium equation

r2v′′
e + rv′

e − ve = 0, (39)

which is the same as Eq. (24) for u(r). (The subscript e, for equilibrium, is included to avoid confusion with
Poisson’s ratio ν.) The general solution has the form ve(r) = c1r + (c2/r) where c1 and c2 are constants.

Table 6 Results at pull-in instability of circular membrane with electrostatic force; FvK theory, ν = 0

u2/(δ
2
0) 0 0.1 0.2 0.3 0.4 0.5 1 2 3 4 5

p∗
V0
/(δ5

0) 0.15 0.21 0.28 0.35 0.42 0.50 0.88 1.67 2.46 3.24 4.04

w∗
0/δ0 0.71 0.65 0.62 0.59 0.56 0.55 0.50 0.46 0.46 0.46 0.46

n∗
r (0)/(δ

2
0) 0.36 0.40 0.48 0.55 0.63 0.72 1.18 2.15 3.15 4.14 5.14

n∗
r (1)/(δ

2
0) 0.20 0.27 0.35 0.44 0.52 0.62 1.10 2.09 3.08 4.08 5.08
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In nondimensional terms, the membrane is subjected to an outward displacement u2 at its outer edge, and
then to a circumferential displacement v1 > 0 at its inner edge. The governing equations for u(r) and ve(r)
are linear and uncoupled. The solution for u(r) is given by Eq. (25), and the solution for ve(r) is

ve(r) = v1a(1 − r2)/[r(1 − a2)]. (40)

The stress resultant nrθ (r) is given by

nrθ (r) = −v1a/[(1 + ν)(1 − a2)r2], (41)

where nrθ = Nrθ /(Eh).
At the onset of wrinkling, the minimum principal stress nmin becomes zero, where

nmin = 0.5(nr + nθ )− [n2
rθ + 0.25(nr − nθ )

2]1/2. (42)

This occurs when nr nθ = n2
rθ , which is satisfied first at the inner edge r = a as v1 is increased.

For outward radial stretching, with the use of Eqs. (26) and (41) for the stress resultants, one obtains the
condition that the membrane remains taut as long as v1 < v∗

1 where

v∗
1 = 2au2ν

1/2/(1 − ν). (43)

If there is no radial stretching, the membrane wrinkles as soon as any circumferential displacement is applied.
When v1 = v∗

1 , the orientations ψ of the minimum principal stress with respect to the tangent to the inner
edge are obtained from tan(2ψ) = 2nrθ /(nθ −nr ) = ν∗

1/(au2) = 2ν1/2/(1− ν). For ν = 0, 0.1, 0.2, 0.3, 0.4
and 0.5, respectively, they are 0, 17.5, 24.1, 28.7, 32.3 and 35.2 degrees, respectively. This implies that the
angle of the wrinkles with respect to the circumference at the inner edge, which is related to the direction of
the maximum principal stress, decreases as ν increases.

For inward radial stretching, with the use of Eqs. (28) and (41), one finds that the membrane remains taut
as long as v1 < v∗∗

1 where

v∗∗
1 = u

1/2
1 [(1 + ν)2a4 − (1 − ν)2]1/2/(1 − ν) (44)

and a must be larger than r∗ in Eq. (29), i.e., the right side of Eq. (44) must be real. When v1 = v∗∗
1 , the

orientations ψ of the minimum principal stress with respect to the tangent to the inner edge are obtained from
tan(2ψ) = ν∗∗

1 /u1, and in this case they depend on the inner radius a and the magnitude u1 of the radial
stretching as well as Poisson’s ratio ν. At the onset of wrinkling, the resulting angle of the wrinkles with
respect to the inner edge decreases as ν increases, decreases as a increases, and increases as u1 increases.

If the inner edge is fixed and the outer edge is given a circumferential displacement v2 > 0, Eq. (40) is
replaced by

ve(r) = v2(r
2 − a2)/[r(1 − a2)] (45)

and v1 is replaced by −v2a in Eq. (41). On the left sides of Eqs. (43) and (44), v1 is replaced by v2a.

10 Torsion and vertical displacement at inner edge

In this section the outer edge of the annular membrane is stretched, and then the inner edge is displaced down-
ward (as in Sect. 4) and twisted (as in Sect. 9). This problem has been considered in [29,33,34] without radial
stretching. The FvK theory is applied here.

The circumferential displacement is again given by Eq. (40). The radial and transverse displacements
are determined numerically from Eqs. (21) and (22) with pt = pn = 0 and with boundary conditions
u(a) = 0, w(a) = w1, u(1) = u2, and w(1) = 0. For given values of w1 and u2, the value v∗

1 of v1 for which
the minimum principal stress is zero (i.e., nr nθ = n2

rθ ) is computed. This yields

v∗
1 = [ν(ε2

r + ε2
θ )+ (1 + ν2)εrεθ ]1/2(1 − a2)r2/[(1 − ν)a] (46)

in terms of the strains εr and εθ , where

εr = u′ + 0.5(w′)2, εθ = u/r. (47)

The minimum principal stress occurs at the inner edge (r = a).



Linearly elastic annular and circular membranes under radial, transverse, and torsional loading 95

10.1 No radial stretching

First consider no radial stretching (u2 = 0) and ν = 1/3. Then the closed-form solution for w(r) and u(r)
in Eq. (30) can be used, along with Eq. (40) for ve(r). It is found that the membrane remains taut as long as
v1 < v1* where

v∗
1 = (1 − a2)a1/3w2

1/[271/2(1 − a2/3)2]. (48)

Therefore, for ν = 1/3 and a given value of a, this threshold value v1* of the torsional displacement ve(a)
increases quadratically with the vertical displacement of the inner edge. The dependence of v1* on the inner
radius a is depicted in Fig. 12, where the quantity v∗

1/w
2
1 is plotted for the range 0 < a < 0.9, and it is seen

that the slope of the curve increases as a increases.

10.2 Outward radial stretching

Now the membrane is pulled outward with a radial deflection u2 at the outer edge (r = 1), is given a downward
displacement w1 at the inner edge (r = a), and is then subjected to a circumferential displacement v1 at the
inner edge. For given values of ν, a, u2, and w1, the quantities u′(a) and w′(a) are varied until u(1) = u2 and
w(1) = 0. Then the value of v∗

1 is computed from the resulting solution using Eq. (46).
Approximately, v∗

1 increases linearly with u2 and quadratically with w1. In Fig. 13, u2 = 0.001 and
w1 = 0.1, and v∗

1 is plotted versus Poisson’s ratio for the cases a = 0.2 and 0.5. Except near ν = 0, v∗
1

increases almost linearly with ν.

0

2

4

6

8

0

2
1

1 *

w

v

a
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Fig. 12 Torsion and vertical displacement at inner edge: normalized threshold v∗
1/(w

2
1) for wrinkling versus a; ν = 1/3; no radial

stretching; FvK theory

0.000

0.005

0.010

0.015

0.0

*
1v

5.0=a

2.0=a

0.1 0.2 0.3 0.4 0.5

Fig. 13 Torsion and vertical displacement at inner edge: threshold v∗
1 versus Poisson’s ratio ν; u2 = 0.001;w1 = 0.1; FvK theory



96 R. H. Plaut

11 Concluding remarks

Wrinkle-free, linearly elastic, annular and circular membranes have been considered, with coupling between
transverse and stretching displacements. Rotationally symmetric equilibrium states were analyzed. Three theo-
ries were considered: the usual Föppl-von Kármán theory (FvK), Reissner’s theory (R), and a new generalization
of Reissner’s theory (GR) that does not restrict the strains to be negligible compared to unity. The equilibrium
equations were written in terms of displacements, and did not include a stress function or stresses that are used
in the governing equations in many previously published studies. The forms presented in Eqs. (8)–(10), (14),
(15), (21) and (22) are especially useful for the problems considered, which involve boundary conditions only
on displacements, and they also are applicable when stress resultants are involved in the boundary conditions.

Displacements, strains, stress resultants, and conditions for the onset of wrinkling (when the minimum
principal stress resultant reduces to zero) were obtained for a number of problems. Some of the problems
considered here are apparently new, such as ponding of an annular membrane, transverse loading with a free
outer edge having no slope or radial displacement, and pull-in instability of a circular or annular MEMS device
in which stretching and nonuniform tension are included in the analysis. Application of the GR theory and
some of the applications of the R theory are also new. In addition, a new closed-form solution was presented for
a pull-off adhesion problem involving a circular membrane. In most cases, numerical solutions were required,
and a shooting method was utilized to obtain them.

The discrepancies between the FvK, R, and GR results tend to increase with increasing displacements,
with the R values tending to lie between the FvK and GR values. Often the displacements, strains, and stress
resultants based on the GR theory have larger magnitudes than those from the FvK and R analyses.

For pulling inward (Sect. 3), wrinkling initiates at the inner edge, and the condition for wrinkling to occur
depends on Poisson’s ratio and the ratio of the radii of the edges of the annular edges, but not on the magnitude
of the applied radial displacement at the inner edge. For torsion (Sects. 9 and 10), wrinkling also begins at the
inner edge, and the threshold value of torsion for wrinkling in the FvK theory is proportional to the applied
radial displacement for pulling outward, and to the square root of the applied radial displacement for pulling
inward. However, for vertical loading of a horizontal annular membrane that can slide vertically but not rotate
at its outer edge (Sect. 7), wrinkling begins at a circle between the inner and outer edges, and in the FvK theory
the condition for wrinkling to occur does not depend on the magnitude of the load.

If a flat membrane is subjected to tension in one direction, the Poisson effect tends to cause it to be com-
pressed and to wrinkle in the perpendicular direction [4]. This effect is more pronounced if the Poisson’s
ratio is higher. However, the opposite trend occurs in some of the problems studied here: wrinkling in the
circumferential direction is more likely for low values of Poisson’s ratio. This is due to the geometry of the
annular membrane and the boundary conditions.

Since linearly elastic behavior is assumed, the GR theory will not be applicable in cases for which the
material deviates significantly from such a constitutive law. However, some materials are approximately lin-
early elastic to strains that are not negligible compared to unity. Also, the GR theory naturally is applicable
when the strains are small, and the numerical solutions for this theory may be just as easy to obtain as those
for the R or FvK theories (e.g., by the shooting method utilized in this investigation).

This study has considered true membranes, with no flexural rigidity. The equations can be modified to
include bending moments and shear forces, and the shooting method can again be used to obtain numerical
solutions. In many physical cases the flexible structure is very thin and the behavior is dominated by stretching,
with bending effects being negligible. Then the theories utilized here are applicable.
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